Journal of Engineering Mathematics 24: 73-80, 1990. 73
© 1990 Kiluwer Academic Publishers. Printed in the Netherlands.

The irreversible Brusselator: the influence of degenerate
singularities in a closed system

B.F. GRAY and R.A. THURAISINGHAM
School of Chemistry, Macquarie University, Sydney, N.S.W. 2109, Australia

Received 19 April 1989; accepted 19 June 1989

Abstract. The appearance of apparently chaotic behaviour in numerical treatment of this two-dimensional system is
examined from an analytical point of view. The original two-parameter model exhibiting chaotic-like solutions is
unfolded to a three-parameter model. This enlarged model is shown to have a codimension-two degenerate Hopf
bifurcation, the unfolding of which contains phase portraits with three concentric limit cycles.

Some segments of these limit cycles are so close to each other that numerical integration causes transitions across
the unstable limit cycle, thus giving the appearance of chaotic behaviour. The region in parameter space where this
occurs is quite significant and it includes part of the plane of the original two-parameter model.

1. Introduction

The ‘Brusselator’ is a model reaction scheme introduced by Prigogine and Lefever [1] as a
nonlinear chemical oscillator. Its viability as a legitimate chemical model has been ques-
tioned by e.g. Gray and Morley-Buchanan [2], King [3], Gray, Merkin and Scott [4] amongst
others, and defended by Nicolis, Lefever and Borckmans [5]. The present work is completely
independent of this controversy, simply looking at the mathematical behaviour of the
original model, where new and at first puzzling results are obtained. These are understood in
terms of an extended model (from two parameters to three) in a way which has no bearing
on the questions of chemical viability. A similar phenomenon shown by another simple
chemical oscillator, the cubic autocatalator, has been discussed recently by Gray and
Thuraisingham [6]. In that case unfolding the model by inclusion of an extra parameter gave
a complete explanation of the numerical behaviour. The present case is parallel to the earlier
one, so we will present rather less detail than in [6].
The differential equations describing the irreversible Brusselator are

d

T or-(tax+ay, (1)
d)’_ 2

qr XXy (2)

This dimensionless form is as used in [4]. The nonlinearity x’y also occurs in the related
‘cubic autocatalator’ [6] described in dimensionless form by

dx_ 2
a5 =Xy x+ry, (3)

dy _ 2
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In [6] numerical solution of (3) and (4) gave chaos-like behaviour for very small ranges of u
in the region 1/8> r> 0. This computer-generated artifact was understood by analysing the
most degenerate Hopf bifurcation of the ‘unfolded system’

dx

d—t—xy x+ry, (5
d

T =hFy—(a+ny. (6)

This system shows an H3, singularity (see Gray and Roberts [7]) and the phase portrait
containing three concentric limit cycles implied by this is shown to occur on the axis a =0 in
parameter space. Segments of these limit cycles are so close together that numerical
instability results regardless of the precision and computational parameters used. We apply
similar techniques here to the model (1) and (2) and obtain a similar explanation of the
chaos-like behaviour shown by this model. The latter has not been reported previously
although the model has now been in the literature for over twenty years.

2. The unfolded model

We generalise the original model to a three-parameter one. In this case the following
differential equations serve our purpose:

d

-c-ix?= —(1+a)x+x2y, N
dy _ 2

dt_p' xy .3)’7 (8)

where the new term is —By. If we use the methods outlined in Gray and Roberts [7] for
two-dimensional three-parameter o.d.e.’s, we can obtain a complete qualitative map of the
behaviour of (7) and (8). The unfolded model differs qualitatively from the original one in
that for B >0 it can exhibit saddle-node bifurcations, i.e. it exhibits multistability. In this
sense, the original model is structurally unstable with respect to the term —gy, >0,
however small 8 may be.

The loci of saddle-node bifurcations are given by

_ 2x°B
b e+ g% 9
2 p—
o= BE—B) (10)

x*+2B8x2+ B

where the parameter x >\/g for physical applicability (i.e. the nonnegative quadrant in
parameter space). This system also shows a hysteresis degeneracy which is

a=1/8 (11)

in the codimension-one (a, 8) plane [7].
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Ordinary Hopf bifurcations occur in this system on the locus given by

azxz—x4—(B+2xZB+Bz)

pny , (12)
_x(BP+2B8)+ 2B -1 +x*

H = x2+B ’ (13)

detJ>0, (14)

where J is the Jacobian matrix for the system.
A degenerate Hopf bifurcation of type H2, (see [7]) can occur in this system, and is
defined by equations (12), (13) and (14) plus

d
a—;traceJ—O, (15)

where we have now chosen w as the bifurcation parameter. After some algebra we obtain
this locus as

a=1-2V2B, detJ>0. (16)

The second type of codimension-one Hopf bifurcation (H3,) has to be investigated numeri-
cally. We use the condition of Gobber and Willamowski [8] to calculate these points
numerically.

Codimension-two bifurcations, the most degenerate ones possible in this system, if they
exist, will occur on the codimension-one curves, i.e. as discrete points on such curves. We
are particularly interested in the occurrence of an H3, degeneracy on the H3, loci. These are
located by calculating the point(s) P, = 0 along the H3, (P, = 0) curve, using the notation of
Gobber and Willamowski. In this particular system, i.e. (7) and (8), we find the presence of
one such point.

It finally remains to investigate the occurrence of a double zero eigenvalue condition
(DZE) where

trace J=0, detJ=0, (17)

which is a codimension-one degeneracy. This corresponds to the intersection of the
saddle-node and nondegenerate Hopf loci, and it will be a curve in three-dimensional
parameter space. This can be obtained explicitly as

3a
B=—4%*

&R

(1-8a)'?. (18)

it is also possible that this system can exhibit one or more degenerate DZE points, for
example where the H2, locus (16) intersects the DZE locus (18) at the roots of

(a—1)"—4a’(1-8a)=0. (19)

The simplest possible unfolding of a point of this type is given in Gray and Roberts [7].
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Other possible degenerate DZE’s for this system will be discussed in another paper, our
prime concern here being to relate the H3, degeneracy to the numerical results.

3. Quantitative results

In Figs 1 and 2 the chaos-like behaviour is shown for two different sets of parameter values.
In Fig. 3 a phase-plane plot is shown of similar mixed oscillations, showing the two stable
limit cycles. Between them, in an unknown position will be an unstable limit cycle.

In Fig. 4 the loci of codimension-one degeneracies are shown in the («, 8) plane. There
are two branches of the H3, curve and a single H3, point at &« =0.112, 8 =0.063. Note that
the classical model has 8 = 0. Two non-local curves, the hysteresis of limit-cycle locus and
Hopf plus period orbit bifurcations (see [6]) are included in order to give path consistency in
the (a, B) planes around the H3, point. The region between the HL and H + PO curves is
relevant to our computed results since it contains phase portraits with three concentric limit
cycles. The presence of the mixed oscillations for the classical model indicates that this
region intersects the 8 =0 plane in parameter space. Here two curves as shown in Fig. 4
have to be computed. For example, for 8 = 10™*, the mixed oscillations occur for 0.95 > & >
0.01 (albeit for a small range of u, see Fig. 6).

The bifurcation loci in the (u, @) plane for small 8(=10"*) are shown in Fig. 5. Again we
have not included all the codimension-zero bifurcation loci (i.e. the saddle-node loci), only
those relevant to the present discussion, i.e. those on which the number of limit cycles
changes. Note that Fig. 5 for g = 107* is qualitatively different from the classical diagram
Fig. 6, to which we have added the new region F where the phase portrait contains three
limit cycles.

t
Fig. 1. Plot of x as a function of time for u =0.048, a =0.05.
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Fig. 2. Plot of x as a function of time for u =0.112, & =0.98.
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Fig. 3. Phase portrait y vs. x for u =0.048, a =0.05.
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Fig. 4. Codimension (a, B) plot, showing the H3, point.
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Fig. 5. (a, n) diagram for B = 107", showing the region of 3 limit cycles.
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Fig. 6. Modified (a, p) diagram for g =0.

4. Conclusions

The classical irreversible Brusselator model represented by the equations

dx 2
M (1+a)x+xy,
dy _ 2

dr X 7*Ys

has a hitherto unknown region in parameter space where the phase portrait contains three
concentric limit cycles. This behaviour is characteristic of a codimension-two degenerate
Hopf bifurcation, requiring a model with at least three parameters. Its presence indicates
possible structural instability with respect to further unfolding.

Unfolding of the model to

dx_ 2
M (1+a)x+xy,

dy _ 2.
L =x-xy- By,

confirms the expectation of a nearby H3, degeneracy which occurs for 8 =0.063. Moreover,
the region of its unfolding containing three limit cycles does in fact cross the B =0 axis,
confirming our interpretation of the computer-generated ‘chaos’. For 8 >0 the model also
shows multistability in the physical region which is not shown by the classical model with
B = 0. The various bifurcation loci for 8— 0" do not uniformly approach the corresponding
loci for B8 =0 in the classical model.
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